If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying (1 + x2)(1 + y2) * dx + -1(xy) * dy = 0 Reorder the terms for easier multiplication: dx(1 + x2)(1 + y2) + -1(xy) * dy = 0 Multiply (1 + x2) * (1 + y2) dx(1(1 + y2) + x2(1 + y2)) + -1(xy) * dy = 0 dx((1 * 1 + y2 * 1) + x2(1 + y2)) + -1(xy) * dy = 0 dx((1 + 1y2) + x2(1 + y2)) + -1(xy) * dy = 0 dx(1 + 1y2 + (1 * x2 + y2 * x2)) + -1(xy) * dy = 0 dx(1 + 1y2 + (1x2 + x2y2)) + -1(xy) * dy = 0 Reorder the terms: dx(1 + 1x2 + x2y2 + 1y2) + -1(xy) * dy = 0 dx(1 + 1x2 + x2y2 + 1y2) + -1(xy) * dy = 0 (1 * dx + 1x2 * dx + x2y2 * dx + 1y2 * dx) + -1(xy) * dy = 0 Reorder the terms: (1dx + 1dxy2 + 1dx3 + dx3y2) + -1(xy) * dy = 0 (1dx + 1dxy2 + 1dx3 + dx3y2) + -1(xy) * dy = 0 Multiply xy * dy 1dx + 1dxy2 + 1dx3 + dx3y2 + -1dxy2 = 0 Reorder the terms: 1dx + 1dxy2 + -1dxy2 + 1dx3 + dx3y2 = 0 Combine like terms: 1dxy2 + -1dxy2 = 0 1dx + 0 + 1dx3 + dx3y2 = 0 1dx + 1dx3 + dx3y2 = 0 Solving 1dx + 1dx3 + dx3y2 = 0 Solving for variable 'd'. Move all terms containing d to the left, all other terms to the right. Factor out the Greatest Common Factor (GCF), 'dx'. dx(1 + x2 + x2y2) = 0Subproblem 1
Set the factor 'dx' equal to zero and attempt to solve: Simplifying dx = 0 Solving dx = 0 Move all terms containing d to the left, all other terms to the right. Simplifying dx = 0 The solution to this equation could not be determined. This subproblem is being ignored because a solution could not be determined.Subproblem 2
Set the factor '(1 + x2 + x2y2)' equal to zero and attempt to solve: Simplifying 1 + x2 + x2y2 = 0 Solving 1 + x2 + x2y2 = 0 Move all terms containing d to the left, all other terms to the right. Add '-1' to each side of the equation. 1 + x2 + -1 + x2y2 = 0 + -1 Reorder the terms: 1 + -1 + x2 + x2y2 = 0 + -1 Combine like terms: 1 + -1 = 0 0 + x2 + x2y2 = 0 + -1 x2 + x2y2 = 0 + -1 Combine like terms: 0 + -1 = -1 x2 + x2y2 = -1 Add '-1x2' to each side of the equation. x2 + -1x2 + x2y2 = -1 + -1x2 Combine like terms: x2 + -1x2 = 0 0 + x2y2 = -1 + -1x2 x2y2 = -1 + -1x2 Add '-1x2y2' to each side of the equation. x2y2 + -1x2y2 = -1 + -1x2 + -1x2y2 Combine like terms: x2y2 + -1x2y2 = 0 0 = -1 + -1x2 + -1x2y2 Simplifying 0 = -1 + -1x2 + -1x2y2 The solution to this equation could not be determined. This subproblem is being ignored because a solution could not be determined. The solution to this equation could not be determined.
| 4B+3B-7=7 | | 2tan^2x+3tanx+1=0 | | 3u-15=-6(u-5) | | x+12y+3z=120 | | (7+v)(3v-5)=0 | | V=B/h3 | | 3x^2/4=6 | | C=.50mv | | 3x=4-8 | | xsquared-16x+39=0 | | 5n+5z=q | | f(x)=-x^2+10x+8 | | 5n+5q=n | | 8(1-2x)=38-6x | | 2x^2-4x+k+1=0 | | (6x-8)-5(5x+9)=3 | | b(14b+5)-9=0 | | -3x-2=x | | (((1/4)^2x-2)/(64^-3x))=4^3 | | 6n(2n-9)= | | 3/5/6 | | 3x-6/x=x-2 | | 20^-3/4^-3 | | 6(8+2n)=4+4n | | 3x^3+21x^2-75x=0 | | -9+(-5)+14-(-6)= | | 6(8+2n)=5+4n | | 7(x-5)=9 | | 3(x-5)+3x=7 | | 20-19x=12.02 | | 7x^5-28x^3-7x^2+28=0 | | 1.2m=45 |